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Graphs

Molecular graphs Social network Transportation network Knowledge graph



Modeling Real-World Data as Graphs

A graph 𝒢 = 𝒱, ℰ, 𝐗

A graph 𝒢 = 𝒱, ℰ, 𝐗

▪ 𝒱 = 𝑣1, 𝑣2, ⋯ , 𝑣𝑁 : the node set

▪ ℰ ⊆ 𝒱 × 𝒱: the edge set

▪ 𝑋 ∈ ℝ𝑁×𝐹: node feature matrix

▪ 𝐴 ∈ 0,1 𝑁×𝑁: adjacency matrix

Tasks for graphs

Node-level tasks Edge-level tasks Graph-level tasks



Learn expressive graph representations by training graph learning models

▪ Graph embeddings can be used for downstream tasks

Graph Representation Learning

A graph 𝒢 = 𝒱, ℰ, 𝐗 Graph learning model 𝑓
ℎ1

ℎ2

ℎ𝑁

Low-dimensional representations



Graph neural networks (GNN)

▪ Iteratively aggregate information in the neighborhood via the message-passing mechanism

Graph Learning Models

[1] Kipf, Thomas N., and Max Welling. "Semi-supervised Classification With Graph Convolutional Networks." ICLR 2017.

[2] Veličković, Petar, et al. "Graph Attention Networks." ICLR 2018.

Graph attention networks (GAT)2Graph convolutional networks (GCN)1



Graph Transformers (GT)

▪ Apply Transformer architectures to graph data

Graph Learning Models

[1] Ying, Chengxuan, et al. "Do Transformers Really Perform Badly for Graph Representation?." NeurIPS 2021.

[2] Chen, Dexiong, et al. "Structure-Aware Transformer for Graph Representation Learning." ICML 2022.

Structure-aware Transformer (SAT)2Graphormer1



End-to-end training

▪ Optimize graph learning models based on abundant label information

Traditional Training Paradigm for Graph Learning Models

A graph 𝒢 = 𝒱, ℰ, 𝐗 Graph learning model 𝑓
ℎ1

ℎ2

ℎ𝑁

Node representations Label information

ℒDT

Loss function
Update model parameters



Rely heavily on label information

▪ Sufficient labeled graph data may be 

inaccessible in practice

Limitations of Traditional Training Paradigm

Poor generalization

▪ Graph learning models cannot be well generalized to 

other downstream tasks 

Graph learning model

Task 2 ×

√Task 1

Insufficient label information
Task 3 ×



Learn generalizable graph embeddings without label information

▪ Pre-training stage

• Graph learning models are learned by solving hand-crafted 

auxiliary tasks ℒPT

• Supervision signals are acquired from graph data itself 

▪ Downstream tasks

• Pre-trained graph learning models directly generate graph 

embeddings used for downstream tasks ℒDT

Graph Pre-training via Self-supervised Learning
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Example: edge prediction → node classification

Objective Gap between Pre-training and Downstream Tasks

Phase Pre-training stage Downstream stage

Illustration

Task Edge prediction Node classification

Involved embeddings A pair of nodes A single node

Prediction Edge probabilities Node class probabilities

? ?



Two-stage adaptation of pre-trained graph learning models

▪ Stage 1: graph pre-training via self-supervised learning

• A graph learning model 𝑓 is pre-trained on a pre-training 

task ℒPT

▪ Stage 2: graph prompting for adaptation 

• Adapt the pre-trained graph learning model 𝑓 for the 

downstream task ℒDT by learning extra prompts 𝒫

• The pre-trained graph learning model 𝑓 keeps frozen

The “Pre-training, Prompting” Scheme

Pre-training 
task ℒPT

?

Pre-training graph 
learning model 𝑓

Input graph
𝒢 = 𝒱, ℰ, 𝐗

Downstream
task ℒDT

Pre-trained graph 
learning model 𝑓

Input graph
𝒢 = 𝒱, ℰ, 𝐗

?

Learnable prompts 𝒫

Trainable Frozen Prompt
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Graph fine-tuning

▪ Adapt pre-trained graph learning models by further tuning model parameters

• Tunable parameters: the whole graph learning model 

• Unchanged part: graph data

Graph prompting

▪ Adapt pre-trained graph learning models by learning extra prompts

• Tunable parameters: additional prompts

• Unchanged part: the pre-trained graph learning model

Comparison between Graph Fine-tuning & Graph Prompting



Prompting in NLP and CV

Context optimization (CoOP)1

[1] Zhou, Kaiyang, et al. "Learning to Prompt for Vision-Language Models." IJCV 2022.

Learning to modify the input data with extra trainable prompts

▪ Prompting in NLP: learn extra trainable tokens



Prompting in NLP and CV

Visual prompt tuning (VPT)1

[1] Jia, Menglin, et al. "Visual Prompt Tuning." ECCV 2022.

Learning to modify the input data with extra trainable prompts

▪ Prompting in CV: learn extra trainable patches



Challenges in Prompting for Graph Learning Models

Non-Euclidean graph data

▪ Important structural information in graph data

Pre-training compatibility

▪ Pre-training strategies: generative/contrastive/…

▪ Should be compatible with various pre-training strategies

Downstream task universality

▪ Downstream tasks: node-level/graph-level/…

▪ Should be universal for different downstream tasks

Pre-training 
task ℒPT

?

Pre-training graph 
learning model 𝑓

Input graph
𝒢 = 𝒱, ℰ, 𝐗

Downstream
task ℒDT

Pre-trained graph 
learning model 𝑓

Input graph
𝒢 = 𝒱, ℰ, 𝐗

?

Learnable prompts 𝒫
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Where Can We Design Prompts for Graph Prompting?

A graph 𝒢 = 𝒱, ℰ, 𝐗 Pre-trained graph learning model 𝑓
ℎ1

ℎ2

ℎ𝑁

Node representations

ℒDT

Downstream task

Data level Representation level Task level



Key Techniques in the “Pre-training, Prompting” Scheme

Section 2 Section 3



Section 2
Graph Pre-training for Graph Prompting

Zehong Wang

PhD Candidate

University of Notre Dame



From Supervised Learning to Self-supervised Learning

Generative Pre-training1

▪ Generate the masked parts

• Masked Token Prediction

• Next Sentence Prediction

[1] Kenton, Jacob Devlin Ming-Wei Chang, and Lee Kristina Toutanova. "BERT: Pre-training of Deep Bidirectional Transformers 

for Language Understanding." NAACL 2019.



From Supervised Learning to Self-supervised Learning

Contrastive Pre-training1

▪ Pull positives together and push negatives apart for discriminative representations

[1] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

Contrastive learning1 Data augmentation for harder tasks



From Supervised Learning to Self-supervised Learning

Multi-Task Pre-training1

▪ A single model to optimize multiple tasks, improving model capability and generalization 

[1] Raffel, Colin, et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.” JMLR 2020.



Pre-Training on Graphs

How to design pre-training tasks on graphs? 

▪ Can we directly apply pre-training tasks on CV and NLP to graphs? 

• Image/Text is in the Euclidean space

• Graph is in the non-Euclidean space

We need to carefully design pre-training tasks on graphs!

Toy examples of different pre-training tasks in CV, NLP, and graph learning1

[1] Liu, Yixin, et al. "Graph Self-Supervised Learning: A Survey." TKDE 2022.



Taxonomy of Graph Pre-Training Techniques



Generative Methods

Intuition: Corrupt the graph and reconstruct the corrupted parts 

▪ Three types of generative methods

• Localized generation

• Contextualized generation

• Globalized generation

[1] Liu, Yixin, et al. "Graph Self-Supervised Learning: A Survey." TKDE 2022.

An illustration of generative methods for graph pre-training1



Generative Methods

𝒢: the original graph

ሚ𝒢: the corrupted graph

𝜃: model parameters

Optimize the loss function: ℒPT = min
𝜃

ℒ 𝑓 ሚ𝒢; 𝜃 , 𝜌 𝒢

Encode corrupted graph Define reconstruction target

Reconstruction

Intuition: Corrupt the graph and reconstruct the corrupted parts 



Generative Methods

[1] Hou, Zhenyu, et al. "GraphMAE: Self-Supervised Masked Graph Autoencoders." KDD 2022.

Localized generation: reconstruct node features

▪ GraphMAE1: Self-Supervised Masked Graph Autoencoders

• Corruption is to mask the node features ሚ𝒢 = 𝑚𝑎𝑠𝑘𝑛𝑜𝑑𝑒(𝒢)

• Encoding 𝑓 ሚ𝒢; 𝜃 is to encode the corrupted graphs twice

• Reconstruction is to reconstruct the masked node features 
Could be extended to centrality level 
or clustering coefficient 



Generative Methods

[1] Pan, Shirui, et al. "Adversarially Regularized Graph Autoencoder for Graph Embedding." IJCAI 2018.

Contextualized generation: reconstruct edges

▪ ARVGA1: Adversarially Regularized Graph Autoencoder for Graph Embedding

Assume the corrupted embeddings are in this space 

Reconstruct the graph edges

Guide to a better 
distribution



Generative Methods

Contextualized generation: reconstruct edges

▪ Many graph prompting methods adapt contextualized generation for pre-training

GPPT1

GraphPrompt2 GraphPrompt+3

[1] Sun, Mingchen, et al. "GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks." KDD 2022.

[2] Liu, Zemin, et al. "Graphprompt: Unifying pre-training and downstream tasks for graph neural networks." WWW 2023.

[3] Yu, Xingtong, et al. "Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs." 

TKDE 2024.



Generative Methods

Globalized generation: reconstruct graph-level property

▪ Corruption: distance-based edge masking and random node feature masking

▪ Reconstruction: reconstruct the edit distance between graphs

[1] Kim, Dongki, Jinheon Baek, and Sung Ju Hwang. "Graph Self-supervised Learning with Accurate Discrepancy Learning." 

NeurIPS 2022.

The workflow of D-SLA1



Generative Methods

Others

▪ Scalable Graph Generative Modeling via Substructure Sequences (G2PM)

• Follow the general transformer pretraining on other domains, like CV and NLP

[1] Wang, Zehong, et al. "Scalable Graph Generative Modeling via Substructure Sequences." arXiv preprint arXiv:2505.16130 

(2025).

Model Scaling

Data Scaling



Contrastive Methods

Main steps

1. View augmentation 

• Corrupt multiple graphs ሚ𝒢𝑘 = corrupt𝑘 (𝒢). 

2. Encoding 

• Encode each view 𝐇k = 𝑓( ሚ𝒢𝑘)

3. Contrast pairs 

• Pick the contrastive pairs and levels

4. Loss 

• Maximize the similarity between positive pairs while 

minimizing the similarity between negative pairs
View

Augmentation
Encoding Contrast

Pairs
Loss



Contrastive Methods

View
augmentation

Encoding

Augmentation: 

1. Feature, e.g., node 
feature masking, node 
feature shuffling, etc. 
2. Structure, e.g., edge 
perturbation, edge 
diffusion
3. Substructure, e.g., ego-
graph sampling, random 
walk sampling, etc. 

Contrast Levels: 

1. Local-Local, e.g., 
node-to-node contrast, 
node-to-subgraph 
contrast. 
2. Local-Global, e.g., 
node-to-graph contrast. 
3. Global-Global, e.g., 
graph-to-graph contrast. 

Contrast
Pairs

Loss

Loss: 

1. InfoNCE
2. JS divergence
3. …



Contrastive Methods

Local-to-local

▪ Augment two views of a single graph, treating the same node in these graphs as positives and 

the remaining as negatives

[1] Zhu, Yanqiao, et al. "Graph Contrastive Learning with Adaptive Augmentation." WWW 2021.

View Augmentation Encoding Contrast Pairs (InfoNCE)

The workflow of local-to-local contrastive methods1



Contrastive Methods

Local-to-local

▪ Augment two views of a single graph, treating the same node in these graphs as positives and 

the remaining as negatives

• GRACE1: random node feature masking + random edge masking

• GCA2: centrality-based node feature masking + centrality-based edge masking

[1] Xia, Jun, et al. "SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation." WWW 2022.

[2] Zhu, Yanqiao, et al. "Graph Contrastive Learning with Adaptive Augmentation." WWW 2021.



Contrastive Methods

Local-to-global

▪ Contrast pairs: node embedding vs graph embedding

▪ Deep Graph Infomax1

[1] Veličković, Petar, et al. "Deep Graph Infomax." ICLR 2019.

Augmentation: 
node feature shuffling + edge perturbation

View Augmentation Encoding Contrast Pairs

Loss: 



Contrastive Methods

Local-to-global

▪ Contrast pairs: node embedding vs graph embedding

▪ Multi-view contrastive learning1

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive Multi-View Representation Learning on Graphs." ICML 2020..

View Augmentation Encoding Contrast Pairs

Loss: Augmentation: 
Graph diffusion + subgraph sampling



Contrastive Methods

Global-to-global

▪ Contrast pairs: graph embedding vs graph embedding

▪ GraphCL1

[1] You, Yuning, et al. "Graph Contrastive Learning with Augmentations." NeurIPS 2020.

View Augmentation Encoding Contrast Pairs

Loss: Augmentation: 
Random node dropping + edge perturbation



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Intuition: inject diverse capability into a single model

[1] Hu, Weihua., et al. "Strategies For Pre-training Graph Neural Networks." ICLR 2020.

Multi-task methods1



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Intuition: inject diverse capability into a single model

▪ Node-level & graph-level

▪ Attribute prediction & structure prediction

[1] Hu, Weihua., et al. "Strategies For Pre-training Graph Neural Networks." ICLR 2020.

Different pre-training tasks1



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Intuition: inject diverse capability into a single model

[1] Hu, Weihua., et al. "Strategies For Pre-training Graph Neural Networks." ICLR 2020.



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Heterogeneous graphs: Multi-view contrastive learning1

• Use meta-paths on heterogeneous graphs to generate multiple views

[1] Wang, Zehong, et al. "Heterogeneous Graph Contrastive Multi-view Learning." SDM 2023.

View Augmentation Encoding Contrast Pairs (local-to-local &local-to-global)



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ GFT: Graph Foundation Model with Transferable Tree Vocabulary1

[1] Wang, Zehong, et al. "GFT: graph foundation model with transferable tree vocabulary." NeurIPS 2024.

Jointly optimizing three-level 

tasks facilitates performance 



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization1

[1] Ju, Mingxuan, et al. "Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization." ICLR. 2023.

Multi-task learning on graphs



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization1

[1] Ju, Mingxuan, et al. "Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization." ICLR. 2023.

Multi-task reconciliation via Parato optimization



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization1

[1] Ju, Mingxuan, et al. "Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization." ICLR. 2023.



Multi-task Methods

Jointly optimize multiple pre-training tasks

▪ MultiGPrompt1: multi-task pre-training for better task adaptation in prompting 

[1] Yu, Xingtong, et al. "MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs." WWW 2024.



Section 3
Techniques in Graph Prompting

Xingbo Fu

PhD Candidate

University of Virginia



Problem Formulation of Graph Prompting 

A graph learning model 𝑓 is trained through a pre-training task ℒPT via self-supervised

learning. During the prompting stage, graph prompting trains learnable prompts 𝒫 to

adapt the pre-trained graph learning model 𝑓 to a specific downstream task ℒDT.

Pre-training compatibility

Downstream task universalityFreeze pre-trained graph learning models



Taxonomy of Graph Prompting Techniques



Data-level Prompting

Learn trainable prompts at the data level

▪ Intuition: modify the input graph data to fit specific downstream tasks

▪ Formulation

▪ Two categories

• Feature-based prompting

• Insertion-based prompting

Given the input graph 𝒢 = 𝐀, 𝐗 , data-level prompting 𝒯𝐷 transforms it into a prompted graph 

ሚ𝒢 = ෩𝐀, ෩𝐗 = 𝒯𝐷 𝐀, 𝐗 , 𝒫 with learnable prompts 𝒫 for adaptation.



Data-level Prompting

Feature-based prompting

▪ Intuition: solely modify the feature matrix by learning prompt features

• Inspired by prompting techniques in NLP and CV

• The graph topology remains unchanged → ሚ𝒢 = 𝐀, ෩𝐗 = 𝒯𝐷 𝐀, 𝐗 , 𝒫

Visual prompt tuning (VPT)2

[1] Fang, Taoran, et al. "Universal Prompt Tuning for Graph Neural Networks." NeurIPS. 2023.

[2] Jia, Menglin, et al. "Visual Prompt Tuning." ECCV 2022.

Graph prompt feature (GPF)1



Data-level Prompting

Feature-based prompting

▪ Goal: learn 𝐩𝑖 for ෤𝐱𝑖 = 𝐱𝑖 + 𝐩𝑖

• Shared prompt features v.s. customized prompt features

Shared prompt features Customized prompt features

Fewer parameters Increasing parameters in large-scale graphs

Easy to train Prone to overfitting

Limited capability More powerful

+ +



Data-level Prompting

Feature-based prompting

▪ Customized prompt features with basis vectors1

෤𝐱𝑖 = 𝐱𝑖 + 𝐩𝑖 = 𝐱𝑖 + ෍

𝑚=1

𝑀

𝛼𝑖,𝑚 ⋅ 𝐛𝑚

[1] Fang, Taoran, et al. "Universal Prompt Tuning for Graph Neural Networks." NeurIPS. 2023.

[2] Lee, Junhyun, et al. "Subgraph-level Universal Prompt Tuning." arXiv preprint arXiv:2402.10380 (2024).

• SUPT2: 𝜶 as the resulting scores derived 
from simple GNNs

𝜶 = ෡𝐀𝑚 𝐗⨁ ෍

𝑚=1

𝑀

𝐛𝑚 𝐖

෡𝐀 = 𝐃 + 𝐈 −
1
2 𝐀 + 𝐈 𝐃 + 𝐈 −

1
2

• GPF-plus1: 𝛼𝑖,𝑚 as the softmax values of 
projected node feature 𝐱𝑖

𝛼𝑖,𝑚 =
exp 𝑎𝑚

T 𝐱𝑖

σ𝑘=1
𝑀 exp 𝑎𝑘

T𝐱𝑖



Data-level Prompting

Feature-based prompting

▪ Customized prompt features by reinforcement 

learning with hybrid action space1

• Hybrid actions: discrete node index to prompt and 

its corresponding continuous prompt features

• States: node representations

• Reward function: instant loss decrease 

• Policy network architecture: H-PPO with two 

parallel actor networks and a single critic network

[1] Zhu, Jiapeng, et al. "RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning." KDD 2025.

𝑟1



Data-level Prompting

Feature-based prompting

▪ Performance evaluation1

• GPF+: prompts based on features may not obtain 

sufficient information

• SUPT: prompts based on both features and structures 

can improve performance

• RELIEF: selective methods are better than learning on 

all the nodes

[1] Zhu, Jiapeng, et al. "RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning." KDD 2025.



Data-level Prompting

[1] Zhu, Jiapeng, et al. "RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning." KDD 2025.

Feature-based prompting

▪ Quantifying Prompts Impact1

• Prompt Coverage Ratio (PCR): the proportion of nodes prompted at least once during prompting

• Average Prompt Magnitude (APM): the absolute values of all entries in prompts

No need for graph prompting on every node!



Data-level Prompting

Insertion-based prompting

▪ Intuition: insert additional prompt nodes as learnable prompts into the original graph

• ሚ𝒢 includes the prompt nodes and the original graph nodes 

• 𝒫 = 𝑝1, 𝑝2, ⋯ , 𝑝𝑀 : 𝑀 learnable prompts as the feature vectors

of the prompt nodes

𝑝1

𝑝2
𝑝3

𝑣1

𝑣2

𝑣3

𝑣4

𝒢𝒫𝒢

𝑤32

𝑤43

𝑤21

ሚ𝒢

▪ Key challenges

• The connection among the prompt nodes

• The connection among the prompt nodes and the original graph nodes 



Data-level Prompting

The connection among the prompt nodes

▪ Solution 1: free learnable parameters 𝑎𝑖𝑗 indicating 

how possible 𝑝𝑖 and 𝑝𝑗 should be connected1

▪ Solution 2: the dot product of each prompt node pair

• Connect 𝑝𝑖 and 𝑝𝑗 if 𝜎 𝐩𝑖 ∙ 𝐩𝑗
T > 𝛿1

▪ Solution 3: treat the prompt nodes as independent1,2

[1] Sun, Xiangguo, et al. "All in One: Multi-task Prompting for Graph Neural Networks." KDD 2023.

[2] Ge, Qingqing, et al. "PSP: Pre-training and Structure Prompt Tuning for Graph Neural Networks." ECML PKDD. 2024.

The connection among the prompt nodes and 

the original graph nodes 

▪ Solution 1: the dot product between a 

prompt node and an original graph node

• 𝑤𝑖𝑗 = 𝜎 𝐱𝑖 ∙ 𝐩𝑗
T > 𝛿 if 𝜎 𝐱𝑖 ∙ 𝐩𝑗

T > 𝛿1

▪ Solution 2: ෤𝐱𝑖 = 𝐱𝑖 + σ𝑚=1
𝑀 𝐩𝑚

1

▪ Solution 3: 𝑁 ×𝑀 free learnable parameters2



Data-level Prompting

Insertion-based prompting for Graph Transformers

▪ VNT1: directly inject prompt nodes in the input of Graph Transformers

[1] Tan, Zhen, et al. "Virtual Node Tuning for Few-shot Node Classification.“ KDD 2023.

No worries about edge connections!



Representation-level Prompting

Learn trainable prompts at the representation level

▪ Intuition: apply learnable prompts to node representations

▪ Formulation

▪ Two categories

• Output representation prompting

• Hidden representation prompting

Given the (hidden) representation matrix 𝐇 𝑙 at the 𝑙–th layer, representation-level 

prompting 𝒯𝑅 transforms it into a prompted representation matrix ෩𝐇 𝑙 = 𝒯𝑅 𝐇 𝑙 , 𝒫

with learnable prompts 𝒫 for adaptation.



Representation-level Prompting

Output representation prompting

▪ Intuition: directly modify the output representations after the final layer

• Only the output representations are modified: ሚ𝐡 𝐿 = 𝒯𝑅 𝐡 𝐿 , 𝒫

▪ Straightforward design: GraphPrompt1

• Element-wise multiplication: ሚ𝐡𝑣
𝐿
= 𝐩𝑣⨀𝐡𝑣

𝐿

• 𝐩𝑣 is shared by all the nodes

• Limitation: shared 𝐩𝑣 is insufficient

[1] Liu, Zemin, et al. "Graphprompt: Unifying pre-training and downstream tasks for graph neural networks." WWW 2023.



Representation-level Prompting

Output representation prompting

▪ Non-homophilic patterns of a node can be characterized by 

considering a multi-hop neighborhood around the node1

𝐬𝑣 =
1

𝒩2(𝑣)
෍

𝑢𝑗∈𝒩2(𝑣)

𝐡𝑣
𝐿
∙ sim 𝐡𝑣

𝐿
, 𝐡𝑗

𝐿

▪ Obtain customized 𝐩𝑣 through a condition-net2

𝐩𝑣 = 𝜑 𝐬𝑣 = CondNet(𝐬𝑣)

[1] Yu, Xingtong, et al. "Non-Homophilic Graph Pre-Training and Prompt Learning." KDD 2025.

[2] Zhou, Kaiyang, et al. "Conditional Prompt Learning for Vision-Language Models." CVPR 2022.

ProNoG1



Representation-level Prompting

Output representation prompting

▪ ProNoG1 performs well on non-homophilic graphs

[1] Yu, Xingtong, et al. "Non-Homophilic Graph Pre-Training and Prompt Learning." KDD 2025.



Representation-level Prompting

Hidden representation prompting

▪ Intuition: modify node representations with layer-wise prompts

• More parameters provide more flexibility

▪ GraphPrompt+1: an advanced version of GraphPrompt

• Learnable prompts at each layer 𝒫 = 𝐩 0 , 𝐩 1 , 𝐩 2 , ⋯ , 𝐩 L

• Prompted representation fusion with learnable coefficients

෩𝐇 =෍

𝑙=0

𝐿

𝑤 𝑙 ∙ ෩𝐇 𝑙

[1] Yu, Xingtong, et al. "Generalized Graph Prompt: Toward a Unification of Pre-Training and Downstream Tasks on Graphs." 

TKDE 2024.



Representation-level Prompting

Hidden representation prompting

▪ EdgePrompt+1: learn edge prompts for each edge

• 𝒆𝑖𝑗
𝑙

: prompt vector on edge 𝑣𝑖 , 𝑣𝑗 at the 𝑙-th layer

• Without edge prompts

𝐡𝑖
𝑙
= COMB 𝑙 𝐡𝑖

𝑙−1
, AGG 𝑙 𝐡𝑗

𝑙−1
: 𝑣𝑗 ∈ 𝒩 𝑣𝑖

• With edge prompts

𝐡𝑖
𝑙
= COMB 𝑙 𝐡𝑖

𝑙−1
, AGG 𝑙 𝒉𝑗

𝑙−1
: 𝑣𝑗 ∈ 𝒩 𝑣𝑖 , 𝐞𝑖𝑗

𝑙
: 𝑣𝑗 ∈ 𝒩 𝑣𝑖

[1] Fu, Xingbo , et al. "Edge Prompt Tuning for Graph Neural Networks." ICLR 2025.



Representation-level Prompting

Hidden representation prompting

▪ EdgePrompt+1: learn edge prompts for each edge

• Compute edge prompts as the weighted average of the anchor prompts

𝐞𝑖𝑗
𝑙
= ෍

𝑚=1

𝑀

𝑏𝑖𝑗𝑚
𝑙
∙ 𝐩𝑚

𝑙

• 𝐛𝑖𝑗
𝑙

is computed using a score function 𝜑 𝑙

𝐛𝑖𝑗
𝑙
= Softmax 𝜑 𝑙 𝑣𝑖 , 𝑣𝑗

𝜑 𝑙 𝑣𝑖 , 𝑣𝑗 = LeakyReLU 𝐡𝑖
𝑙−1

||𝐡𝑗
𝑙−1

∙ 𝐖 𝑙

𝑀 anchor prompts at the 𝑙-th layer

𝒫 𝑙 = 𝐩1
𝑙
, 𝐩2

𝑙
, ⋯ , 𝐩𝑀

𝑙

[1] Fu, Xingbo , et al. "Edge Prompt Tuning for Graph Neural Networks." ICLR 2025.



Representation-level Prompting

Hidden representation prompting

▪ Why EdgePrompt+ works?

• Prompting on nodes: add learnable prompts to node features or 

representations1

• Limitation: 𝐩𝑖 will be uniformly aggregated by neighboring nodes

• Prompting on edges: add learnable prompts on edges2

• 𝐞𝑖𝑗 provides customized prompts to different neighboring nodes

• Each node broadcasts distinct prompts to its neighbors

𝐩𝟑 𝐩𝟐
𝒗𝟏 𝒗𝟐𝒗𝟑

𝐩𝟏 𝐩𝟏

𝐞𝟏𝟑 𝐞𝟏𝟐
𝒗𝟏 𝒗𝟐𝒗𝟑

𝐞𝟑𝟏 𝐞𝟐𝟏

[1] Fang, Taoran, et al. "Universal Prompt Tuning for Graph Neural Networks." NeurIPS. 2023.

[2] Fu, Xingbo , et al. "Edge Prompt Tuning for Graph Neural Networks." ICLR 2025.



Representation-level Prompting

Hidden representation prompting

▪ EdgePrompt+ is more powerful than EdgePrompt

→ Customized edge prompts > shared edge prompts

▪ EdgePrompt+ is compatible with both generative 

and contrastive pre-training strategies

▪ GPF-plus is competitive among data-level 

prompting methods

Graph classification



Representation-level Prompting

Hidden representation prompting

▪ One anchor prompt is insufficient in most cases

▪ Two many anchor prompts may not improve performance (hard to train)

Node classification

Graph classification



Task-level Prompting

Learn trainable prompts at the task level

▪ Intuition: reformulate downstream tasks into alternative forms

▪ Formulation

▪ Two categories

• Link prediction-based prompting

• Similarity-based prompting

Particularly classification tasks

Given a downstream task ℒDT (e.g., node classification), task-level prompting 𝒯𝑇 transforms 
it into a different task ሚℒDT = 𝒯𝑇 ℒDT, 𝒫 with learnable prompts 𝒫 for adaptation.



Task-level Prompting

Link prediction-based prompting

▪ Recall: the gap between edge prediction for pre-training and node classification as the downstream task

Phase Pre-training stage Downstream stage

Illustration

Task Edge prediction Node classification

Involved embeddings A pair of nodes A single node

Prediction Edge probabilities Node class probabilities

? ?

Can we convert node classification to edge prediction?



Task-level Prompting

Link prediction-based prompting

▪ Intuition: convert node classification to edge prediction

• Pre-training stage: edge prediction with positive and negative pairs

Positive pair

Negative pair

Pre-training objective

𝑣1 𝑣2

𝑣1 𝑣3

×

min
𝜋GNN,𝜙Proj

෍

𝑣𝑖,𝑣𝑗

ℒCE 𝜙Proj 𝐡𝑖 , 𝐡𝑗 , 𝑔 𝑣𝑖 , 𝑣𝑗

𝑔 𝑣1, 𝑣2 = 1

𝑔 𝑣1, 𝑣2 = 0



Task-level Prompting

Link prediction-based prompting

▪ Intuition: convert node classification to edge prediction

• Downstream stage: construct positive and negative pairs using learnable task tokens

Positive pair

Negative pair

Downstream objective

𝑣1 𝑦1

𝑣1 𝑦2

×

𝑔 𝑣1, 𝑦1 = 1

𝑔 𝑣1, 𝑦2 = 0

min
𝜋GNN,𝜙Proj,𝐄

෍

𝑣𝑖,𝑦𝑐

ℒCE 𝜙Proj 𝐡𝑖 , 𝐞𝑐 , 𝑔 𝑣𝑖 , 𝑦𝑐



Task-level Prompting

Link prediction-based prompting

▪ GPPT: one global task token 𝐄 is insufficient for all nodes1

• Task tokens should vary with clusters

• For each cluster 𝑚, train an independent task token 𝐄𝑚

• Use structure tokens to replace node embeddings: 𝐞𝑖 = 𝑎𝑖 ∙ 𝐡𝑖 + σ𝑣𝑗∈𝒩 𝑣𝑖
𝑎𝑗 ∙ 𝐡𝑗

• Final objective

min
𝜋GNN,𝜙Proj,𝐄

1,⋯,𝐄𝑀
෍

𝑣𝑖,𝑦𝑐

ℒCE 𝜙Proj 𝐡𝑖 , 𝐞𝑐
𝑚 , 𝑔 𝑣𝑖 , 𝑦𝑐

min
𝜋GNN,𝜙Proj,𝐄

1,⋯,𝐄𝑀
෍

𝑣𝑖,𝑦𝑐

ℒCE 𝜙Proj 𝐞𝑖 , 𝐞𝑐
𝑚 , 𝑔 𝑣𝑖 , 𝑦𝑐 + 𝜆෍

𝑚

𝐄𝑀 𝐄𝑀 T − 𝐈
𝐹

2

[1] Sun, Mingchen, et al. "GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks." KDD 2022.



Task-level Prompting

Link prediction-based prompting

▪ The impact of cluster numbers in GPPT1

• The performance of GPPT is significantly damaged with one cluster

[1] Sun, Mingchen, et al. "GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks." KDD 2022.

Cluster number study



Task-level Prompting

Similarity-based prompting

▪ Intuition: compare graph representations to class prototypes using contrastive loss

min
𝒫

෍

𝑥,𝑦 ∈𝒟

− log
exp sim 𝐡𝑖 , 𝐬𝑦 /𝜏

σ𝑐∈𝒴 exp sim 𝐡𝑖 , 𝐬𝑐 /𝜏

▪ How to get class prototypes?

• GraphPrompt, GraphPrompt+, ProNoG: use the average of instance representations 

belonging to class 𝑐

• HetGPT1: initialized using average representation and tuned while prompting

Class prototypes

[1] Ma, Yihong, et al. "HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks." 

WWW 2024.



Comparison of Graph Prompting Techniques



Section 4
Summary and Future Directions

Xingbo Fu

PhD Candidate

University of Virginia



Summary

Graph prompting

▪ Objective gap between pre-training and downstream tasks

• Example: link prediction → node classification 

▪ Graph pre-training methods: the foundation step of graph prompting

• Generative methods, contrastive method, multi-task methods

▪ Mainstream techniques in graph prompting 

• Data-level, representation-level, task-level techniques



Future Directions

Benchmarks and datasets

▪ Standard experimental settings for performance evaluation

▪ Cross-dataset & cross-domain evaluation

▪ One existing benchmark1

[1] Zi, Chenyi, et al. "ProG: A Graph Prompt Learning Benchmark." NeurIPS 2024.



Future Directions

Theoretical foundation

▪ Empirical improvements → theoretical guarantees 

[1] Wang, Qunzhong, et al. "Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis.“ ICML 2025.

The upper bound of graph prompting1



Future Directions

Theoretical foundation

▪ Empirical improvements → theoretical guarantees 

[1] Fang, Taoran, et al. "Universal Prompt Tuning for Graph Neural Networks." NeurIPS. 2023.

Universal capability of graph prompting1



Future Directions

Theoretical foundation

▪ Empirical improvements → theoretical guarantees 

[1] Fu, Xingbo, Yinhan He, and Jundong Li. "Edge Prompt Tuning for Graph Neural Networks." ICLR 2025.

Separability improvements by graph prompting1



Future Directions

Attacks & defense in graph prompting

▪ A new attack and defense perspective by graph prompting

Adversarial attacks in graph prompting1

[1] Song, Shuhan, et al. "GPromptShield: Elevating Resilience in Graph Prompt Tuning Against Adversarial Attacks." ICLR. 2025.



Future Directions

LLM Incorporation for graph prompting

▪ Graph prompting with semantic information in graph data

• Text-attributed graphs (TAGs)

[1] Liu, Zheyuan, et al. "Can we Soft Prompt LLMs for Graph Learning Tasks?." WWW 2024.

GraphPrompter1



Future Directions

LLM Incorporation for graph prompting

▪ Graph prompting with semantic information in graph data

• Knowledge graphs (KGs)

[1] Tian, Yijun, et al. "Graph Neural Prompting with Large Language Models.“ AAAI 2024.

Graph Neural Prompting (GNP)1



Future Directions

Applications in various domains

Recommendation systems1 Knowledge engineering2

[1] Yang, Haoran, et al. "An Empirical Study Towards Prompt-Tuning for Graph Contrastive Pre-Training in Recommendations." 

NeurIPS 2023.

[2] Zhang, Wen, et al. "Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer." WWW 2023.

[3] Wang, Yingying, et al. "DDIPrompt: Drug-Drug Interaction Event Prediction based on Graph Prompt Learning." CIKM. 2024.

Biology and medicine3



THANK YOU!
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